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Whistle-stop tour of astrochemistry

What is astrochemistry?

Astrochemistry is the study of the chemical elements found
in outer space, generally on larger scales than the Solar
System, particularly in molecular gas clouds, and the study
of their formation, interaction and destruction. — Wikipedia
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Whistle-stop tour of astrochemistry

What is astrochemistry?

Astrochemistry is the study of atoms, molecules, ions and
radicals found outside of the Solar System and the pro-
cesses which affect them. Generally this excludes the pro-
cesses which occur inside stars (e.g., nucleosynthesis) —
PMW
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Why do we care?
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Chemical modelling

A+B—M+N
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Chemical modelling

A+B—M+N
ccfft n(M) = kn(A)n(B) — Bn(M)
o}
5i"(N) = kn(A)n(B) — B1n(N)
i n(A) = kyn(X)n(Y) — p2n(A)

f/lt n(B) = kon(J)n(K) — Bsn(B)
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Chemical modelling

In addition to neutral-neutral processes, one must consider:

lon-molecule reactions
Charge transfer reactions
Radiative associations
Radiative recombinations
Dissociative recombinations
Cosmic-ray ionisations
Photoionisation
Photodissociation
X-ray ionisation
lonisation due to active radionucleides
Grain-surface reactions
etc. etc.
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An example

To model the carbon isotope chemistry in a protoplanetary disk,
with species up to C4 in size:

8172 reactions
479 species
6 elements
= around four days runtime on a single processor
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The big picture
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AA Tau results
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AA Tau results
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AA Tau results
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GV Tau results
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Benzene in protoplanetary disks
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Benzene in protoplanetary disks
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Woods & Willacy (2007)
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in AA Tau

Protoplanetary disks in GV Tau

Predictions of heavy molecules
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HCN and H'3CN ice

Woods & Willacy (2008)

Fractionation of HCN ice -

15

Height [AU]

40

20

0 ‘ I S A 0
5 10 15 20 25 30
Radius [AU]

Paul M. Woods hemical modelli




Small molecules in AA Tau
Protoplanetary disks Small molecules in GV Tau
Predictions of large molecules

Predictions of heavy molecules

Solar System comparison - '°C

W4OJHHHH‘HHHH“HHHH T H‘HHHL
Sun
[ Venus ]
120 Earth 1 7
[ Moon T [ ]
4 * b
100 ;ﬁtom * IDPs
] ¢ N
aturn
a-----—- i inlaiataly * Ll
. Telluric value 4
80 g Neptune 1
d- - — PR U
by Local interstellar value N
60 ;, Comets -
L [}

40 e e

0 10 20 30 40 50
Radius [AU]

Paul M. Woods hemical modelli

12C/15C




Small molecules in AA Tau
Protoplanetary disks Small molecules in GV Tau
Predictions of large molecules

Predictions of heavy molecules

Deuterium isotopes

Fig. 11.— The deuteration of HCN and H»O ices in Model 2.
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Oxygen isotopes

Work in progress...

Woods & Willacy (2009?)
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The big picture
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AGB stars
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Figure 5. A plot of fractional abundance versus the log of radius (cm) for
assorted C,H radicals.
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AGB stars
Evolved stars Protoplanetary nebulae
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Evolved stars

AGB stars
Protoplanetary nebulae

The radiation catastrophe
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Summary

Summary

@ The chemistry of simple molecules is complex!

@ The chemistry of complex molecules is simple more
complex!

@ Despite the complexities, chemical models work pretty well
whether applied to young stellar environments or old.

@ Chemical models allow us to understand what we see with
our telescopes, and they allow us to predict what we could
see (for instance, with ALMA)
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Summary

@ The chemistry of simple molecules is complex!

@ The chemistry of complex molecules is simple more
complex!

@ Despite the complexities, chemical models work pretty well
whether applied to young stellar environments or old.

@ Chemical models allow us to understand what we see with
our telescopes, and they allow us to predict what we could
see (for instance, with ALMA)

@ Future work

SAGE-Spec: an infrared survey of the LMC (w/ Ciska et al.)
Dust condensation modelling (w/ Andrew & Ciska)

Oxygen isotopes in the protosolar nebula (w/ Karen Willacy)
etc. etc.
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