
A&A 518, L142 (2010)
DOI: 10.1051/0004-6361/201014513
c© ESO 2010

Astronomy
&

Astrophysics
Herschel: the first science highlights Special feature

Letter to the Editor

Cold dust in three massive evolved stars in the LMC�,��

M. L. Boyer1, B. Sargent1, J. Th. van Loon2, S. Srinivasan3, G. C. Clayton4, F. Kemper5, L. J. Smith1, M. Matsuura6,7,
Paul M. Woods5, M. Marengo8, M. Meixner1 ,���, C. Engelbracht9, K. D. Gordon1, S. Hony10, R. Indebetouw11,

K. Misselt9, K. Okumura10, P. Panuzzo10, D. Riebel12, J. Roman-Duval1, M. Sauvage10, and G. C. Sloan13

(Affiliations are available in the online edition)

Received 26 March 2010 / Accepted 20 Mai 2010

ABSTRACT

Massive evolved stars can produce large amounts of dust, and far-infrared (IR) data are essential for determining the contribution of cold dust
to the total dust mass. Using Herschel, we search for cold dust in three very dusty massive evolved stars in the Large Magellanic Cloud: R71
is a luminous blue variable, HD 36402 is a Wolf-Rayet triple system, and IRAS05280-6910 is a red supergiant. We model the spectral energy
distributions using radiative transfer codes and find that these three stars have mass-loss rates up to 10−3 M� yr−1, suggesting that high-mass stars
are important contributors to the life-cycle of dust. We found far-IR excesses in two objects, but these excesses appear to be associated with ISM
and star-forming regions. Cold dust (T < 100 K) may thus not be an important contributor to the dust masses of evolved stars.
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1. Introduction

Intermediate-mass asymptotic giant branch (AGB) stars are po-
tentially the dominant dust source in the Galaxy (Gehrz 1989)
and in low-metallicity environments like the Large Magellanic
Cloud (LMC; Srinivasan et al. 2009; Matsuura et al. 2009) and
other dwarf galaxies (Boyer et al. 2009). However, dust produc-
tion in high-mass stars (�8 M�) remains uncertain. It has been
suggested that supernovae (SNe) might be the dominant dust fac-
tory at high-z, since intermediate-mass stars have not yet had
time to evolve into AGB stars (Morgan & Edmunds 2003; Dwek
et al. 2009). However, the amount of dust formed in SNe in the
local universe is much less than required to explain the dust seen
at high-z (e.g., Sugerman et al. 2006; Andrews et al. 2010). It is
also unclear if the dust forms before or after the SN explosion.
Alternatively, Sloan et al. (2009) and Valiante et al. (2009) show
that AGB stars can contribute dust at high redshifts. These stud-
ies point to a need to measure the total dust mass from all types
of stars to obtain a global picture of dust evolution in galaxies.

Part of the LMC was observed with Herschel (Pilbratt et al.
2010) as part of the science demonstration program (SDP) and
the Legacy program entitled HERschel Inventory of The Agents
of Galaxy Evolution (HERITAGE; Meixner et al. 2010). In this
letter, we describe a first look at Herschel Photodetector Array
Camera and Spectrometer (PACS; Poglitsch et al. 2010) and
Spectral and Photometric Imaging REceiver (SPIRE; Griffin
et al. 2010) detections of 3 examples of dust-producing mas-
sive evolved stars in the LMC: the Wolf-Rayet (WR) system

� Herschel is an ESA space observatory with science instruments
provided by European-led Principal Investigator consortia and with im-
portant participation from NASA.
�� Table 2 is only available in electronic form at
http://www.aanda.org
��� Visiting Scientist at Smithsonian Astrophysical Observatory,
Harvard-CfA, 60 Garden St., Cambridge, MA, 02138.

HD 36402, the luminous blue variable (LBV) HDE 269006 (or
R71), and the red supergiant (RSG) OH/IR star IRAS05280–
6910. While such stars have been studied extensively in the mid-
IR (e.g., Morris et al. 1999; Clark et al. 2003; Crowther 2007;
Bonanos et al. 2009; van Loon et al. 2010), this study is among
the first to probe them at λ � 200 μm.

2. Mid- to far-infrared photometry

We obtained PACS (100 and 160 μm) and SPIRE (250, 350
and 500 μm) fluxes using apertures roughly the size of the
source full-width at half-maximum and sky apertures avoid-
ing regions of high background (Table 1). We also performed
aperture photometry on the Multiband Imaging Photometer for
Spitzer (MIPS; Rieke et al. 2004) images from the Surveying
The Agents of Galaxy Evolution Spitzer Legacy program (SAGE;
Meixner et al. 2006).

In Sect. 3 we examine the optical to far-IR spectral en-
ergy distributions (SEDs). Optical UBVI and near-IR JHK pho-
tometry are from the Magellanic Clouds Photometric Survey
(Zaritsky et al. 1997) and the Two Micron All-Sky Survey
(Skrutskie et al. 2006), via the SAGE catalog. J, K, and L′ pho-
tometry of IRAS05280-6910 are from van Loon et al. (2005).
I−band photometry for HD 36402 is from the Deep Near-
Infrared Southern Sky Survey (Epchtein et al. 1997). InfraRed
Array Camera (IRAC; Fazio et al. 2004) 3.6−8.0 μm pho-
tometry is from the SAGE catalog. Spectra from the InfraRed
Spectrograph (IRS; 5.2−38 μm; Houck et al. 2004) and MIPS
spectra (MIPS-SED; 52−97 μm) are also included (e.g., SAGE-
Spec; Kemper et al. 2010; van Loon et al. 2010). We correct for
extinction using the extinction map from Schlegel et al. (1998),
assuming the stars lie midway the LMC contribution: AV ≈
1 mag for HD 36402 and IRS05280-6910 and AV ≈ 0.4 mag
for R71.
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Table 1. Target information and Herschel flux densities.

Name RA, Dec (J2000) Type Fν (mJy)
100 μm 160 μm 250 μm 350 μm 500 μm

R71 05h02m07.39s, −71◦20′13.1′′ LBV 447 ± 8 105 ± 10 50 ± 6 49 ± 13 27 ± 9
IRAS05280−6910 05h27m40.11s, −69◦08′04.5′′ RSG, OH/IR ... ... 205 ± 8 46 ± 13 <11 ± 10
HD 36402 05h26m03.94s, −67◦29′57.9′′ WC4(+O?)+O8I ... ... ... ... ...
HD 36402 IR1/YSO2 05h26m02.99s, −67◦29′57.7′′ YSO? 531 ± 10 872 ± 33 677 ± 33 <431 ± 23 <132 ± 21

Notes. Quoted uncertainties are 1σ. Upper limits are either below the 3σ detection level or include substantial flux from an adjacent unresolved
source. IRAS05280–6910 does not fall within the PACS coverage. The WR star itself is not resolved in Herschel images; it is severely blended with
an IR source (IR1/YSO2). The 350 and 500 μm fluxes of IR1/YSO2 include a nearby YSO (N51-YSO1), which is unresolved from IR1/YSO2 at
these wavelengths. Aperture corrections for PACS and SPIRE were estimated using the current point-spread functions, and are roughly 1.4 and 1.2,
respectively. None of the sources are heavily affect by high and/or variable backgrounds (Fig. 1).

Fig. 1. Herschel images of R71 (left panels), IRAS05280-6910 (middle
panels), and HD 36402 (right panels, also see Fig. 3). Contours on a
linear scale are included where it is difficult to see the detection.

3. The IR nature of detected sources

The vast majority of point-sources detected in the LMC SDP
data appear to be young stellar objects (YSOs) or background
galaxies (Sewiło et al. 2010); AGB stars were not detected. Here,
we describe the Herschel observations of three very dusty mas-
sive stars (Fig. 1).

3.1. R71

R71 (Fig. 1) is an LBV with Mbirth ≈ 40 M� (Lennon et al.
1993), and is currently experiencing an unprecedented erup-
tion that began in 2005. One month prior to the SDP obser-
vations (Oct. 2009), it showed a ∼2 mag increase in visual
brightness and the V-band light curve was just beginning to
plateau (Szczygiel et al. 2010). Van Loon et al. (2010) find a lack

of cold dust in R71, as indicated by Spitzer data (Td � 100 K).
The Spitzer data were acquired just prior to the current outburst,
and the Herschel data presented here were obtained at near-
maximum. However, the PACS and MIPS points appear consis-
tent with each other, such that a model fit to the optical to MIPS
data also agrees with the PACS points. This indicates that the in-
creased emission from the photosphere has not yet significantly
affected the 100–160 μm flux. Note that the MIPS 160 μm point
is an upper limit.

IRS and ISO spectra of R71 show strong PAH, crystalline
forsterite and enstatite features (Voors et al. 1999; Morris et al.
2008; Buchanan et al. 2009; Waters 2010). A 10.5 μm amor-
phous silicate feature indicates dominantly oxygen-rich (O-rich)
chemistry. Morris et al. (2008) and Voors et al. (1999) speculate
that the dust was formed during a prior RSG phase.

Figure 2 shows R71’s SED. Ultraviolet spectra (Blair et al.
2009) are consistent with the stellar component included in our
model. We fit the SED with a 2-Dust model (online Table 2;
Ueta & Meixner 2003), adopting spherical symmetry and grain
properties of the dominant species: amorphous silicate. Three
dust components are visible, including a previously unknown
excess visible in the SPIRE data at 250, 350 and 500 μm (8,
3.8, and 3σ detections, respectively). The two warmer compo-
nents are modeled by the 2-Dust code using two concentric dust
shells. We assume the gas-to-dust ratio for the LMC is ψ = 300
(cf. Meixner et al. 2010), yielding Ṁ ∼ 10−6 M� yr−1 for the
inner dust shell and Ṁ ∼ 10−3 M� yr−1 for the outer shell, as-
suming υwind = 10 km s−1, consistent with the wind speed of
a shell ejected during an RSG phase. Stahl et al. (1986) find
υ ≈160 km s−1 from the Hα line profile, indicating the MLR for
the inner shell could be an order of magnitude higher. A dusty
model (Nenkova et al. 1999) fits the SED equally well and esti-
mates a MLR that is the 2-Dust outer shell value.

We fit the far-IR excess with a modified blackbody:
Fλ ∝ Bλ (Td) (1 − e−τλ), where Bλ(Td) is the Planck function
at temperature Td, τλ is the optical depth, and τλ ∝ λ−β. Here,
we use β = 1.5. The resulting dust temperature is 9± 1 K, which
is extremely low compared to the expected temperature of outer
shells in evolved stars (∼30 K; Speck et al. 2000), and is in-
stead consistent with temperatures of dense ISM dust clouds (see
Sect. 4).

3.2. IRAS05280-6910

IRAS05280-6910 is an RSG OH/IR star. It is detected in all
Spitzer and Herschel bands up to 350 μm (>3.5σ; Figs. 1 and 2).
The star is heavily extinguished in the optical and near-IR, and
the 10 and 18 μm silicate features are seen in absorption in the
IRS spectrum (Kemper et al. 2010). Van Loon et al. (2010) find
no indication of dust colder than ∼100 K in the MIPS data.
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Fig. 2. SEDs of R71 (top), IRAS05280–6910 (middle) and HD 36402
(bottom), fit to 2-Dust models (orange lines). Far-IR excesses are fit
to modified blackbodies (green lines). The IRS and MIPS-SED spectra
are shown in black and the stellar components are the dotted lines. In
the upper two panels, the 24 μm points are saturated (lower limits). In
the bottom panel, the bright far-IR emission originates from IR1/YSO2;
the WR system is detected in PACS, but unresolved from IR1. See text.

We fit the SED of IRAS05280–6910 using 2-Dust (flat-
tened geometry) and dusty (spherical symmetry). Both models
fit the SED reasonably well (only the 2-Dust model is shown
in Fig. 2), but predict stronger absorption in the 10 μm silicate
feature than is seen in the IRS spectrum, even when including
grains as large as 1 μm (increasing a0 suppresses the silicate fea-
ture). This discrepancy may be due to the inclusion in the slit of
a nearby RSG (WOH G347), which is too faint to contribute to
the SED at other wavelengths, but shows emission near 10 μm
with enough flux to veil the silicate absorption by the neces-
sary amount (van Loon et al. 2005). Based on both model fits
and assuming an outflow velocity of ≈20 km s−1 (as measured
from maser emission; Marshall et al. 2004), the mass-loss rate
(MLR) was Ṁ = 2 − 8 × 10−3 M� yr−1 when the dust was pro-
duced (online Table 2). There is no evidence of excess emission
at λ > 100 μm in the SDP data, implying there is no significant
contribution from cold (	100 K) and/or large (μm – mm size)
grains.

3.3. HD 36402

HD 36402 (Fig. 3) is a WR star that is part of a triple system
(Moffat et al. 1990). It is the reddest LMC WR star studied by
Bonanos et al. (2009) in IRAC, potentially due to dust formed in
colliding stellar winds (Crowther 2007). HD 36402 is detected
by PACS (Fig. 3b), which might indicate the presence of some
cool dust. However, the system is almost totally unresolved from
the stronger far-IR emission immediately to the west (Figs. 1
and 3b), which appears to originate from a nearby molecular
cloud, visible in Hα (Fig. 3; Dopita et al. 1994; Chu et al. 2005).
We refer to this emission as HD 36402 IR1.

(a) (b)

Fig. 3. Composite HST/WFPC2 image of HD 36402 in Hα and [S II]
(purple). The contours represent a) IRAC 8 μm; and b) PACS 100 μm.

The IRS spectrum of HD 36402 from SAGE-Spec is fea-
tureless and reminiscent of R Coronae Borealis stars, which are
C-rich (no silicate dust) and hydrogen-deficient (no PAHs). The
continuum emission is thought to be due to amorphous carbon
dust (e.g., Kraemer et al. 2005). The SED (Fig. 2) shows a stel-
lar component and a component from a detached, dusty shell
(∼2−24 μm). The far-IR SED is dominated by IR1, so an ac-
curate fit to the WR system in the far-IR is not possible with
this dataset. In the lowest resolution images (MIPS 160, SPIRE
350 and 500 μm), IR1 is also unresolved from N51-YSO1 (up-
per limits in Fig. 2), further complicating the SED. A 2-Dust
model (Fig. 2, orange line) gives Ṁ = 7 × 10−6 M� yr−1.

What is the nature of IR1? Based on its IRAC colors, Chu
et al. (2005) identify it as a YSO (N51-YSO2). We have at-
tempted to fit a two-component modified blackbody (β = 2.0)
to the IR1 SED to check if it instead originates from dust heated
directly by the radiation emanating from HD 36402. These fits
yield a dust temperature of 64 K, with 15 K dust in its wake, con-
sistent with this scenario. However, a temperature of 64 K places
the molecular cloud ∼0.3 ± 0.1 pc from the WR system, assum-
ing typical luminosities of a WC4 star and two O star compan-
ions. The high-resolution Hα image (Fig. 3) puts the molecular
cloud at least 1.2 pc away from the WR system, assuming a dis-
tance of 50 kpc to the LMC (Schaefer 2008). It thus seems likely
that the far-IR emission of IR1 is indeed related to a YSO em-
bedded in the molecular cloud rather than to direct heating from
HD 36402. In the HST image (Fig. 3), the cloud appears bright-
est in the region adjacent to HD 36402, which may indicate some
interaction between the two. If this is indeed the case, it is plau-
sible that the formation of YSO2 was triggered by HD 36402.

4. Implications

The new far-IR Herschel data have allowed us to take the first
steps in assessing the contribution of cold dust to the total dust
mass in 3 massive stars. For the RSG IRAS05280–6910, the
models give a total dust mass of ≈0.3 M�. This dust mass is
extremely large for an RSG star; indeed it is also highly uncer-
tain, as it is computed from the dust density distribution and the
grain composition and size distribution, which introduces many
degeneracies. By adjusting these parameters, we can reduce the
dust mass by at least 60%, possibly more. The MLR (online
Table 2), while still uncertain, is a more reliable quantity and
suggests the star has entered a necessarily-brief phase of extreme
mass loss. The large mass found using our simple, preliminary
models may indicate a complicated geometry with a preferential
viewing angle requiring more extensive modeling, or perhaps the
RSG is embedded in a dusty cloud. Whatever the total envelope
mass, a lack of excess far-IR emission over the model indicates
that ancient, cold dust does not contribute significantly. Dust at
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50 K, for instance, must contribute less than 10% of the dust
mass implied by the model fit to explain this lack of far-IR ex-
cess.

The LBV R71 shows three dust components. A component
emitting at ∼10−100 μm resembles RSG dust. A second com-
ponent dominates at 3−10 μm. Its temperature (Tin = 490 K)
suggests it formed <50 yrs ago, assuming υ ∼ 100 km s−1

and T0 = 1000 K, perhaps during the 1970s outburst (Wolf &
Zickgraf 1986). The third, more tentative dust component is vis-
ible at λ > 250 μm. If this feature corresponds to cold circum-
stellar dust, the implied dust mass is Mdust � 10−1 M�, follow-
ing Evans et al. (2003) and assuming the absorption coefficient,
κ(500 μm), is 20 cm2 g

−1
(Ossenkopf & Henning 1994). This

is far too much dust for a star of this mass; together with its
very cold temperature (9 K), this high mass suggests that the far-
IR emission is pre-existing ISM dust swept up by stellar winds
and/or is ISM dust along the line-of-sight. Indeed, the contours
in Fig. 1 appear to show diffuse emission at the position of R71
at the longest wavelengths. If the far-IR emission instead orig-
inates from the circumstellar envelope, then very large grains
similar to the cm-sized grains in the Egg Nebula (Jura et al.
2000) might explain the far-IR emission without requiring the
implied large dust mass and cold temperature. Follow-up spec-
troscopy or deeper SPIRE imaging may help uncover the nature
of the far-IR emission.

The WR system, HD 36402, seems to be forming dust in col-
liding winds, which is too warm to emit much at far-IR wave-
lengths. The apparent far-IR emission from HD 36402 (Fig. 3b)
is unfortunately totally overwhelmed by far-IR emission orig-
inating from a nearby molecular cloud. Assuming κ(70 μm) ≈
140 cm2 g

−1
and κ(500 μm) ≈ 20 cm2 g

−1
(Ossenkopf &

Henning 1994), we find M63 K
dust = 1.0(±0.3) × 10−2 M� and

M15 K
dust = 1.5 ± 0.4 M� of dust in the molecular cloud.

Stellar evolution models, while still uncertain, show that
massive stars like these eventually explode as SNe. Due to its
proximity to a molecular cloud, the HD 36402 remnant may re-
semble the SN remnant N49, which has swept up 0.2 M� of
dust from the ISM (van Loon et al. 2010; Otsuka et al. 2010).
The absence of strong evidence for very large grains in R71 and
IRAS05280-6910 does not raise the prospects of RSG dust sur-
viving a SN blast. Regardless of their fates, the dust masses in
these 3 stars are quite large, compared with the dust mass found
in a typical AGB star, showing that high-mass stars are impor-
tant contributors to the life-cycle of dust even in low-metallicity
environments like the LMC. However, we emphasize that we do
not find strong evidence for cold dust and/or large grains in any
of the three objects discussed here, except where it is certain
(HD 36402) or likely (R71) to be of interstellar origin and not
synthesized by the object itself. These observations indicate that
far-IR data of a much larger sample of luminous evolved stars in
both Magellanic Clouds will be obtained in the full HERITAGE
dataset, from which we expect clearer patterns to emerge.
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Table 2. SED fit parameters and results.

T∗ L∗ Tin R∗ Rout/Rin Rin Ṁtotal T sub−mm
dust Msub−mm

dust
(104 K) (105 L�) (K) (R�) (km) (M� yr−1) (K) (M�)

R71 (inner/outer shell) 1.5 4.6 490/120 100 2/1.6 ∼1011/1012 ∼10−6 / ∼10−4 9 ± 1 �10−1

IRAS05280−6910 0.3 2.2 250 1700 30 ∼1011 ∼10−3 ... ...
HD 36402 18 4.6 960 15 300 ∼1010 7 × 10−6 ... ...
HD 36402 IR1 (YSO2) ... ... ... ... ... ... ... 64/15 (±1) 10−12/>1.5 ± 0.4

Notes. Fitting results from 2-Dust. dusty fits for R71 and IRAS05280-6910 estimate outer shell MLRs 2× to 4× less than the 2-Dust results.
IR1/YSO2 was fit with two modified blackbodies (64 K and 15 K). For R71, we use O-deficient silicate optical constants (Ossenkopf et al. 1992)
at long wavelengths and astronomical silicate optical constants (Draine & Lee 1984) at λ < 0.18 μm. For IRAS05280–6910, we use Ossenkopf
et al. (1992) O-deficient silicates and for HD 36402, we use amorphous carbon grains from Zubko et al. (1996). The 2-Dust models use a KMH
grain size distribution (Kim et al. 1994) with amin = 0.01 μm and a0 = 0.1 μm (a0 = 1 μm for IRAS05280-6910). Stellar parameters for R71 are
consistent with those from Lennon et al. (1993). T sub−mm

dust is the temperature of the coldest dust component. For IRAS5280-6910, υwind is measured
from the maser emission (20 km s−1; Marshall et al. 2004). For R71, we use 10 km s−1, but the velocity measured from the Hα profile indicates the
inner shell velocity may be >10× larger (Stahl et al. 1986). For HD36402, a typical velocity for a WC4 star is assumed (3000 km s−1; Willis et al.
2004).
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