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“AGN feedback”

“AGN feedback” is currently

postulated to explain many issues in
galaxy evolution:

e The origin of the black hole mass
vs bulge mass relation (1mplies
connection between galaxy and
black hole growth)

¢ Avoidance of over-production of
massive galaxies

e “Old, red and dead” appearance
of massive ellipticals

(Radio-loud?) AGN activity is
thought to be responsible for these
latter two.
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Two modes of AGN activity
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Eddington rates of radio AGN
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e Best & Heckman (2012): used radio galaxies in Sloan Digital Sky
Survey (SDSS), classified by type, and estimated accretion rates

e (Clear dichotomy in Eddington-scaled accretion rates between the
two source classes

e Similar dichotomy seen between BL-Lacs and flat-spectrum
quasars - the beamed counterparts (e.g. Wu et al 2011)



Eddington rates of radio AGN
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e Matches theoretical expectations for a change in the nature of the
accretion flow from standard thin discs to advection-dominated

accretion flows (ADAFSs) at accretion rates below a few %
Eddington




Local galaxies and their AGN

e [ ook at the demographics of galaxies in local Universe

e AGN selected from SDSS by emission lines or radio emission
- Radiative-mode AGN: responsible for quenching process?
- Jet-mode AGN: responsible for maintaining quenched state?
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Radiative-mode AGN

Not the focus of this talk (mostly these are radio-quiet, though they include

the high-excitation radio AGN), but some relevant points:
- see e.g. Heckman & Best 2014, ARA&A for details

e AGN activity is strongly connected with star-formation activity
- more specifically, depends on star-formation near the nucleus
- radiative-mode AGN activity needs dense cold gas in nucleus

® At fixed mass and star formation rate, radiative AGN activity is

independent of merger activity, and environment
- AGN needs nuclear gas supply but doesn’t care where that comes from
- typical Seyfert: secular fuelling by non-axisymmetric perturbations (eg. bars)

e Specific SFRs of AGN hosts are typical of all SF galaxies, at all z.

- Radiative-AGN evolution, like SF, driven by increase in gas availability

e Little evidence for large-scale AGN-driven outflows in ‘typical Seyferts’
- Situation may be different for most powerful AGN, and radio-loud AGN




Fuelling of powerful jet-mode AGN

e Hot gas 1s the most viable fuelling
source for powerful radio sources
- found 1n massive galaxies
- often in groups and clusters
- have X-ray emitting hot gas haloes

X-ray with radio contours Perseus

—0— Lyyss > 102 W HZ

A Lyyss > 102 W Hz!
~ © = Lyyes > 10% W Hz"

= 1 arcmin ~ 21.4 kpc}

X-ray Optical

% of gals that are radio-loud AGN

10.0 10.5 11.0 1.5 12.0
log,,(Stellar mass / solar masses)




Fuelling of powerful jet-mode AGN

e Hot gas 1s the most viable fuelling
source for powerful radio sources
- found 1n massive galaxies
- often in groups and clusters
- have X-ray emitting hot gas haloes

X-ray with radio contours Perseus

e Bondi accretion?
- dMgBondgi/dt =4 T A (G Msu)?p / ¢cs
- insufficient to explain energetics

e (Gas 1s cooling: hydro simulations
(Gaspari et al. 2013) suggest cold
chaotic accretion at ~100 x Bondi

- also show that accretion rate can

respond quickly to system changes
* required feature of feedback

Optical




Jet-mode AGN feedback

Conditions just right for an AGN feedback cycle:
e AGN fuelled from cooling hot gas
e AGN jets deposit the energy back into the same hot gas

Radio source distributes energy around whole environment by
dissipative sound/shock waves driven by expanding radio bubbles

- cf. Perseus cluster studies of Fabian et al (2003,2005.2006)
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Jet-mode AGN energetics

¢ One estimate uses cavities blown in hot gas by radio sources:
- Ecav = fcay pV (fcav e 4)
= Pmech,cav = 7 X 10°° feay (L1.4GHZ/1025W HZ_1)0'68 A\

e Alternative uses minimum energy condition for synchrotron
= Pmech,sync =4 x 103 (fW)3/2 (L1.4GHz/1025W HZ'I)O'85 W

- fw ~ 10-20 incorporates the uncertainty factors
* nature of jet plasma; low energy synchrotron cutoff; etc
x-ray with radio oISt Perseus @ Cavity data; 4pV

Pmech.cav best fit (Eq 2)
- Pmech,sync (Eq 1)’ fw = 10,20

I°g1 O(Pcav / W)
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Jet-mode AGN energetics

Energetics are (more than) sufficient to balance the gas cooling:

Cooling flow clusters:
- almost all contain active radio source
- instantaneous mechanical jet powers match X-ray cooling rates

Galaxy scales:
- instantaneous heating exceeds cooling, but most gals “switched off”.
- time-averaged rate from recurrent activity (over-)balances cooling
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A radio-AGN feedback cycle

Hot gas emits in X-rays and cools.
(faster in more massive systems)

Radio-AGN act as a

No more fuel for CSER GRS Cooling rate increases;
black hole, so radio- controlling the some gas falls onto the

AGN is switched off SRR central black hole
gas. Maintains host

galaxy as “old, red
and dead”

Hot X-ray gas 1s Radio-AGN switched
heated by AGN; on. Jets deposit energy
gas cooling stops into surrounding gas




Radio morphologies

e Extended radio sources have also
historically been classified by
morphology, into Fanaroff-Riley
Classes 1 and 2.

- most FR1s are LERGs (few HERGs) "o Radio-loud, radiative-mode AGN

- most FR2s are HERGs (but of S ST
significant LERG population)

Number density / Mpc™ log, (L)

e What 1s the connection between
morphology & excitation class?
- just that both dichotomies depend

on radio luminosity? (see LFs of
Best et al 2012; Gendre et al 2013)

- -1
log(py) [Mpc™ AlogP™']

24

logP [W/Hz/sr]




Radio morphologies

e Using SDSS sample, visually
classified ~1300 extended local
radio galaxies brighter than
S1.4GHz = 40mJy
- Miraghaei & Best 2017, subm.
- sample large enough to
investigate origin of each of FR
classification and HERG/LERG
dichotomies, independent of the
other

- Also investigated difference
between extended and compact
objects

Wide-Angle Talil FRI




HERG/LERG vs FR1/2 differences

Many radio-AGN properties depend on radio luminosity & mass

e Match in these parameters, as well as morphology/excitation state
- e.g. compare FR1/2 of same excitation state, mass and radio luminosity

Sample FRII-FRI HERG-LERG

Matched properties Lrad,t-Mx Lrad,t-Mx
Sample size M=N=77 M=15, N=45
Significance thresholds  Dg5=0.22, Dgg=0.26  Dg5=0.40, Dgg=0.48
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HERG/LERG vs FR1/2 differences

Results confirm many previous results but without worry of biases:

e HERG/LERG classification seems to depend on gas supply to galaxy:
- HERGs are more likely to be in star-forming galaxies
- LERGs favour denser environments (where hot gas cooling expected)
e FR1/2 classification depends on host galaxy & environment

- FR1s favour denser environments and more bulge-dominated galaxies
- Consistent with models whereby FR1 jets are disrupted by environment

Indication: two distinct processes but driven by similar factors:

® Accretion rate

- If high enough then crosses threshold for a HERG

- Higher accretion = more powerful jet, likely to survive disruption: FR2
® Environment

- Hot gas cooling in dense environment typically low accretion rate: LERG
- Dense environment more likely to disrupt jets: FR1




Cosmic evolution of jet-mode AGN

e Evolution of radio luminosity function established for many years.
- But evolution of just “jet-mode” AGN needs source classification

e Best & Heckman (2012): first separate luminosity functions

e Best et al (2014): first measure of evolution of jet-mode AGN
- weak (luminosity-dependent) increase to z~0.5, then falls at low-L
- see also Pracy et al 2016; find similarly very low evolution
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Left: radio luminosity functions of jet- and radiative-mode AGN (Best & Heckman 2012)
Right: cosmic evolution of jet-mode AGN to z~1 (Best et al. 2014).




Cosmic evolution of jet-mode AGN

e Compare to evolution of massive quiescent
galaxies (potential hosts):

- declining availability of massive hot haloes;
broadly fits weak radio-AGN evolution.

- but extra complications: luminosity evolution,
triggering time delay (~2Gyr), or contribution
of dying cold-gas fuelled sources | T e rnernes

- extending analysis to z~1.5 1s critical test ot 2o om0
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LOFAR Surveys

To go beyond this we need deeper wide-area radio surveys: LOFAR

 LOFAR is optimised for deep wide-field imaging:
« Observes ~15 deg? at a shot (multi-beam capability)

 LOFAR Surveys Key Science Project imaging the whole northern
sky to 100 microJy rms @ 150 MHz with 5 arcsec resolution
» To date, about 10% of northern sky observed
» See Rottgering et al 2011; Shimwell et al in press

* Deeper Tiers of observation in best-studied degree-scale fields
e Deepest observations in Elais-N1; 250 hrs of data so far

» Going to be very exciting for a wide range of science (both AGN
and star-forming galaxies)

« Will hugely increase accuracy of jet-mode cosmic evolution
measurements at z<1, and allow analyses to be extended to z~2.




ELAIS-N1 field
LOFAR @ 150 MHz




Radio sources 1n Elais-N1

Wealth of available optical/IR data & spectroscopy
 PanSTARRS Medium Deep Field (grizy; to 1~25.5)

« UKIDSS LAS (JK, to K~22)

» Spitzer SWIRE and SERVS (3.6, 4.5 microns)

e Dedicated BOSS DR10 spectroscopy & WHT AF2 spectroscopy
From 1st 8-hr dataset:

* Over 95% identification fraction

Sisomuz > 1.0 mdy Elais-N1 sources
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Model prediction

» ~40% spectroscopic redshifts

Star-forming gals
Jet-mode AGN
Radio-quiet quasars

* Roughly equal mix of SFGs and
jet-mode radio AGN

» Fewer high-z sources than SKA
simulated sky model predictions
(where jet-mode AGN dominate)

Number of sources

Redshift




Summary

e Radiative mode AGN
- typically in moderate mass galaxies (~101%> Mgun)
- AGN activity correlated with central star formation
- fuelled by cold dense gas, supplied through secular processes
- little evidence for AGN feedback except in extreme cases

e Jet-mode AGN

- Eddington-scaled accretion rates below ~1%

- advection-dominated accretion flow; most energy output into jet

- massive galaxies, fuelled by hot gas cooling from X-ray hot haloes

- AGN-feedback cycle, maintaining galaxies “old, red & dead”

- cosmic evolution traces massive passive gals, but with complications

e [ OFAR

- operating extremely well, carrying out deep & wide radio surveys
- deep data in Elais-N1 will trace jet-mode cosmic evolution to z>1




