Fundamental modes of AGN activity in the local Universe and beyond

Philip Best

Institute for Astronomy University of Edinburgh

RAS Discussion Meeting, 9th December 2016

"AGN feedback"

- "AGN feedback" is currently postulated to explain many issues in galaxy evolution:
- The origin of the black hole mass vs bulge mass relation (implies connection between galaxy and black hole growth)
- Avoidance of over-production of massive galaxies
- "Old, red and dead" appearance of massive ellipticals
 (Radio-loud?) AGN activity is thought to be responsible for these latter two.

Two modes of AGN activity

Eddington rates of radio AGN

- Best & Heckman (2012): used radio galaxies in Sloan Digital Sky Survey (SDSS), classified by type, and estimated accretion rates
 - Clear dichotomy in Eddington-scaled accretion rates between the two source classes
- Similar dichotomy seen between BL-Lacs and flat-spectrum quasars the beamed counterparts (e.g. Wu et al 2011)

Eddington rates of radio AGN

 Matches theoretical expectations for a change in the nature of the accretion flow from standard thin discs to advection-dominated accretion flows (ADAFs) at accretion rates below a few % Eddington

Local galaxies and their AGN

- Look at the demographics of galaxies in local Universe
- AGN selected from SDSS by emission lines or radio emission
 - Radiative-mode AGN: responsible for quenching process?
 - Jet-mode AGN: responsible for maintaining quenched state?

Radiative-mode AGN

Not the focus of this talk (mostly these are radio-quiet, though they include the high-excitation radio AGN), but some relevant points:

- see e.g. Heckman & Best 2014, ARA&A for details
- AGN activity is strongly connected with star-formation activity
 - more specifically, depends on star-formation near the nucleus
 - radiative-mode AGN activity needs dense cold gas in nucleus
- At fixed mass and star formation rate, radiative AGN activity is independent of merger activity, and environment
 - AGN needs nuclear gas supply but doesn't care where that comes from
 - typical Seyfert: secular fuelling by non-axisymmetric perturbations (eg. bars)
- Specific SFRs of AGN hosts are typical of all SF galaxies, at all z.
 Radiative-AGN evolution, like SF, driven by increase in gas availability
- Little evidence for large-scale AGN-driven outflows in 'typical Seyferts'
 Situation may be different for most powerful AGN, and radio-loud AGN

Fuelling of powerful jet-mode AGN

- Hot gas is the most viable fuelling source for powerful radio sources
 - found in massive galaxies
 - often in groups and clusters
 - have X-ray emitting hot gas haloes

Fuelling of powerful jet-mode AGN

- Hot gas is the most viable fuelling source for powerful radio sources
 - found in massive galaxies
 - often in groups and clusters
 - have X-ray emitting hot gas haloes
- Bondi accretion?
 - $dM_{Bondi}/dt = 4~\pi~\lambda~(G~M_{BH})^2~\rho~/~c_s{}^3$
 - insufficient to explain energetics
- Gas is cooling: hydro simulations (Gaspari et al. 2013) suggest cold chaotic accretion at ~100 x Bondi
 - also show that accretion rate can respond quickly to system changes
 * required feature of feedback

Jet-mode AGN feedback

Conditions just right for an AGN feedback cycle:

- AGN fuelled from cooling hot gas
- AGN jets deposit the energy back into the same hot gas

Radio source distributes energy around whole environment by dissipative sound/shock waves driven by expanding radio bubbles

- cf. Perseus cluster studies of Fabian et al (2003,2005.2006)

Jet-mode AGN energetics

• One estimate uses cavities blown in hot gas by radio sources:

- $E_{cav} = f_{cav} pV$ ($f_{cav} \sim 4$)
- $P_{\text{mech,cav}} = 7 \text{ x } 10^{36} \text{ f}_{\text{cav}} (L_{1.4\text{GHz}}/10^{25} \text{W Hz}^{-1})^{0.68} \text{ W}$
- Alternative uses minimum energy condition for synchrotron
 - $P_{\text{mech,sync}} = 4 \text{ x } 10^{35} \text{ (f_W)}^{3/2} (L_{1.4\text{GHz}}/10^{25}\text{W Hz}^{-1})^{0.85} \text{ W}$
 - $f_W \sim 10\mathchar`-20$ incorporates the uncertainty factors
 - ★ nature of jet plasma; low energy synchrotron cutoff; etc

Jet-mode AGN energetics

Energetics are (more than) sufficient to balance the gas cooling: Cooling flow clusters:

- almost all contain active radio source
- instantaneous mechanical jet powers match X-ray cooling rates

Galaxy scales:

- instantaneous heating exceeds cooling, but most gals "switched off".
- time-averaged rate from recurrent activity (over-)balances cooling

A radio-AGN feedback cycle

Hot gas emits in X-rays and cools. (faster in more massive systems)

No more fuel for black hole, so radio-AGN is switched off Radio-AGN act as a "cosmic thermostat" controlling the cooling of the hot gas. Maintains host galaxy as "old, red and dead"

Cooling rate increases; some gas falls onto the central black hole

Hot X-ray gas is heated by AGN; gas cooling stops

Radio-AGN switched on. Jets deposit energy into surrounding gas

Radio morphologies

- Extended radio sources have also historically been classified by morphology, into Fanaroff-Riley Classes 1 and 2.
 - most FR1s are LERGs (few HERGs)
 - most FR2s are HERGs (but significant LERG population)
- What is the connection between morphology & excitation class?
 - just that both dichotomies depend on radio luminosity? (see LFs of Best et al 2012; Gendre et al 2013)

Radio morphologies

- Using SDSS sample, visually classified ~1300 extended local radio galaxies brighter than S_{1.4GHz} = 40mJy
 - Miraghaei & Best 2017, subm.
 - sample large enough to investigate origin of each of FR classification and HERG/LERG dichotomies, independent of the other
 - Also investigated difference between extended and compact objects

HERG/LERG vs FR1/2 differences

Many radio-AGN properties depend on radio luminosity & mass

- Match in these parameters, as well as morphology/excitation state
 - e.g. compare FR1/2 of same excitation state, mass and radio luminosity

Sample	FRII-FRI		HERG-LERG	
Matched properties Sample size	$L_{rad,t}$ -M $_{\star}$ M=N=77		L _{rad,t} -M _★ M=15, N=45	
Significance thresholds	D ₉₅ =0.22, D ₉₉ =0.26		D ₉₅ =0.40, D ₉₉ =0.48	
$L_{rad,c}$	0.58	>99%	-0.36	-
$L_{rad,t}$	-	-	-	-
R ₅₀	-0.35	>99%	-0.10	-
g-r	0.21	-	0.36	-
4000Å break	0.20	-	0.74	>99%
R_{90}/R_{50}	0.32	>99%	0.45	>95%
μ_{50}	0.38	>99%	-0.30	-
M_{BH}	0.35	>99%	0.47	>95%
Density	0.36	>99%	0.43	>95%
Tidal	0.15	-	0.42	>95%
Richness	0.28	>99%	0.24	-
PCA1	0.30	>99%	0.53	>99%
PCA2	-0.31	>99%	-0.19	-
L _[OIII]	0.38	>99%	-0.90	>99%

HERG/LERG vs FR1/2 differences

Results confirm many previous results but without worry of biases:

- HERG/LERG classification seems to depend on gas supply to galaxy:
 - HERGs are more likely to be in star-forming galaxies
 - LERGs favour denser environments (where hot gas cooling expected)
- FR1/2 classification depends on host galaxy & environment
 - FR1s favour denser environments and more bulge-dominated galaxies
 - Consistent with models whereby FR1 jets are disrupted by environment

Indication: two distinct processes but driven by similar factors:

- Accretion rate
 - If high enough then crosses threshold for a HERG
 - Higher accretion = more powerful jet, likely to survive disruption: FR2
- Environment
 - Hot gas cooling in dense environment typically low accretion rate: LERG
 - Dense environment more likely to disrupt jets: FR1

Cosmic evolution of jet-mode AGN

- Evolution of radio luminosity function established for many years.
 - But evolution of just "jet-mode" AGN needs source classification
- Best & Heckman (2012): first separate luminosity functions
- Best et al (2014): first measure of evolution of jet-mode AGN
 - weak (luminosity-dependent) increase to z~0.5, then falls at low-L
 - see also Pracy et al 2016; find similarly very low evolution

Cosmic evolution of jet-mode AGN

- Compare to evolution of massive quiescent galaxies (potential hosts):
 - declining availability of massive hot haloes; broadly fits weak radio-AGN evolution.
 - but extra complications: luminosity evolution, triggering time delay (~2Gyr), or contribution of dying cold-gas fuelled sources
 - extending analysis to z~1.5 is critical test

Left: cosmic evolution of potential jet-mode AGN hosts Right: modelling of jet-mode AGN evolution

LOFAR Surveys

To go beyond this we need deeper wide-area radio surveys: LOFAR

- LOFAR is optimised for deep wide-field imaging:
 - Observes ~15 deg² at a shot (multi-beam capability)
- LOFAR Surveys Key Science Project imaging the whole northern sky to 100 microJy rms @ 150 MHz with 5 arcsec resolution
 - To date, about 10% of northern sky observed
 - See Rottgering et al 2011; Shimwell et al in press
- Deeper Tiers of observation in best-studied degree-scale fields
 - Deepest observations in Elais-N1; 250 hrs of data so far
- Going to be very exciting for a wide range of science (both AGN and star-forming galaxies)
 - Will hugely increase accuracy of jet-mode cosmic evolution measurements at z<1, and allow analyses to be extended to $z\sim2$.

Radio sources in Elais-N1

Wealth of available optical/IR data & spectroscopy

- PanSTARRS Medium Deep Field (grizy; to i~25.5)
- UKIDSS LAS (JK, to K~22)
- Spitzer SWIRE and SERVS (3.6, 4.5 microns)
- Dedicated BOSS DR10 spectroscopy & WHT AF2 spectroscopy

From 1st 8-hr dataset:

- Over 95% identification fraction
- ~40% spectroscopic redshifts
- Roughly equal mix of SFGs and jet-mode radio AGN
- Fewer high-z sources than SKA simulated sky model predictions (where jet-mode AGN dominate)

Summary

• Radiative mode AGN

- typically in moderate mass galaxies ($\sim 10^{10.5} M_{sun}$)
- AGN activity correlated with central star formation
- fuelled by cold dense gas, supplied through secular processes
- little evidence for AGN feedback except in extreme cases

• Jet-mode AGN

- Eddington-scaled accretion rates below $\sim 1\%$
- advection-dominated accretion flow; most energy output into jet
- massive galaxies, fuelled by hot gas cooling from X-ray hot haloes
- AGN-feedback cycle, maintaining galaxies "old, red & dead"
- cosmic evolution traces massive passive gals, but with complications
- LOFAR
 - operating extremely well, carrying out deep & wide radio surveys
 - deep data in Elais-N1 will trace jet-mode cosmic evolution to z>1