Hercules A (z=0.154): HST and JVLA image

An infrared perspective on powerful radio galaxies in the local universe

Dan Dicken: CEA-Saclay

Collaborators: Clive Tadhunter, Raffaella Morganti, Cristina Ramos-Almeida

Why study radio galaxies in the infrared?

Testing unification schemes

- Less obscuration
- Isotropic emission

The 2Jy Sample

of southern radio galaxies

Star formation

- Dust heating mechanism
- Mid-infrared spectral diagnostics
- Galaxy evolution

Dust and cool ISM masses

- AGN triggering
- Mergers

The 2Jy infrared sample

- 46 steep spectrum selected radio galaxies + quasars
- Radio flux limited S_{2.7Ghz}>2Jy
- delta<+10 degrees: ideal for ALMA
- Intermediate redshifts: 0.05<z<0.7
- Optical classifications:
 - 43% Narrow Line (NLRG)
 - 33% Broad Line (BLRG/Q)
 - 24% Weak Line (WLRG) i.e. 76% are strong line (SLRG)

Observational campaigns:

- Radio: VLA, ATCA
- Optical: ESO, VLT, Gemini
- Near infrared: UKIRT, SOFI/NTT
- Sub-mm: APEX LABOCA
- X-ray: Chandra/XMM
- Infrared: Spitzer MIPS & IRS, Herschel DDT

High mid- to far-IR detection rates:

- ➢ 24µm 100%
- > 70µm 90%
- ➤ 100µm 100%
- ➤ 160µm 89%

http://2jy.extragalactic.info/

Spectral Energy Distributions

- Herschel data has been vital for completing the infrared SED
- Principally we are looking for the signatures of thermal infrared emission from dust reprocessing the light from the AGN or star formation
- Steep spectrum (radio) emission is on larger scales compared to infrared

Importance of accounting for the non-thermal infrared emission

- Contamination of far-IR by beamed core emission significant in:
 - FRI 83 %
 - FRII 18 %

- Contamination by steep spectrum radio lobe emission inside infrared beam significant in:
 FRII + CSS 15 %
- The latter can be corrected in most cases

Testing unified schemes I

- Spitzer IRS Spectra shows differences between BLRG/Q and NLRG - silicate features
- In line with orientation based unification

- The mid-IR spectral line [OIV] λ25.89 μm is a good candidate for an AGN power indicator
- High ionization potential (Eion = 54.9 eV)
- Long wavelength less likely to suffer from the effects of dust extinction

Dicken et al. 2012, 2014

Testing unified schemes II

- BLRG/Q show tight correlation between L[OIV] and AGN power indicators L[OIII] (left) and L24 µm (right)
- NLRG show anisotropy both for optical [OIII] and L24µm
- A factor of ~2.3 attenuation in the NLRG relative to BLRG/Q for [OIII] and 24µm
- Implies AV \sim 0.8 visual extinction for [OIII] compared to AV \sim 20–100 at 24 $\mu m,$ depending on extinction law

The 2Jv Sam

of southern radio galaxies

Dust heating mechanism

Slope of the correlation for 24µm and 70µm with L[OIII] the same

The 2Jy Sample of southern radio galaxies

- Points towards common origin
- Objects with recent star formation lie above the correlation at 70µm
 - But slope remains the same

Results for 2Jy and 3CR FRII radio galaxies (Dicken et al. 2012)

Dust heating mechanism

 Repeating experiment at Herschel wavelengths shows results hold out to 160µm

Showing 2Jy sample only - K-corrected far-infrared luminosities

Merger signatures

Pre-coalescence Tidal tails, bridges

<u>Coalescence</u> Distorted morphologies , dust lanes

Post-coalescence Fans and shells

- 95% of the 2Jy SLRG show evidence for tidal features (Ramos Almeida et al. 2011, 2012)
- Important in context of mergers and AGN triggering but what kind of mergers are these?

Star formation in major gas-rich mergers?

The 2Jy Sample of southern radio galaxies

 If radio galaxies triggered at peak of major merger we might expect to see ULIRG like star formation rates

70µm derived star formation rates

The 2Jy Sample of southern radio galaxies

- Upper limiting star formation rates in radio galaxies typically low $(0.1 30 M_{\odot} \text{ yr}^{-1})$
- WLRG have lower Star formation rates than SLRG
- Unlikely that the majority of powerful radio galaxies are triggered at the peaks of major, gas-rich mergers

Dust masses I

Back of the envelope calculation for quasar triggering

- Define quasar to have $L_{bol} > 10^{38}$ W
- Black hole must accrete >0.2 M_{\odot} yr⁻¹ to maintain activity (η =0.1)
- Typical quasar lifetimes: ~10⁶ 10⁸ yr

→ Mass accreted by black hole over lifetime: $\sim 2x10^5 - 2x10^7 M_{\odot}$

- But, on the basis of the black hole mass/host galaxy correlations, for every 1 M_\odot accreted by the black hole, ~500 M_\odot stars must be formed in the bulge of the host galaxy

 \rightarrow Total gas reservoir for a particular quasar triggering event is ~ 10⁸-10¹⁰ M_{sun}

→ For quasar lifetime of ~10⁷yr and $M_{gas}/M_d=150$ we predict dust mass: ~7x10⁶ M_☉ or log10(M_d/M_\odot) ~ 6.8

Dust masses from Herschel data

- Assume a single temperature modified BB fit
- Fits to SEDs and colour-colour plots (objects with SPIRE data) → β~1.2
- Determine dust temperatures (T_d) for non-SPIRE objects from 160/100 colour and β =1.2
- Dust masses follow from:

$$M_d = \frac{S_v D^2}{\kappa_v^m B(v, T_d)}$$

Dust masses II

Median dust masses $log_{10}(M_d/M_{\odot})$ Radio Galaxies: 6.8Local ULIRGs: 7.8Local Ellipticals: 5.2Prediction: 6.8

- Radio galaxy dust masses lie between ULIRGs and local ellipticals - although some RG are ULIRGs
- A minor merger with a gas-rich companion (~2xLMC) provides sufficient cool gas to sustain quasar-like activity for ~10⁷ yr
- Such reservoirs detected in most of the powerful radio-loud AGN

Tadhunter et al. 2014

The 2Jy Sample of southern radio galaxies

Future prospects: ALMA

Molecular gas masses - comparison with dust masses

 does quasar triggering require a large reservoir of cool gas?

Molecular gas distribution and kinematics:

 to what extent does quasar triggering depend on the distribution and kinematics of the gas?

Summary

- Important to account for non-thermal contamination, especially in CSS and WLRG
- Far-IR results consistent with orientation-based unified schemes, with some evidence for mild anisotropy in [OIII] and 24 micron continuum
- AGN heating of far-IR dust may be significant → far-IR not a "clean" SFR indicator
- Upper limiting SFR are relatively modest in most cases (~1 30 M_sun yr-1)
- Dust masses are also relatively modest
- Consistent with scenario in which the majority of local radio AGN triggered in minor or modest mergers (with ~15% triggered in more major mergers)