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1 Introduction

ExoFit is a software for extracting orbital parameters of extra-solar planets
from radial velocity data. It can search for either one or two planets and uses
Markov Chain Monte Carlo(MCMC) method to estimate orbital parameters
and their uncertainties. ExoFit is presented in [1].

2 Installing ExoFit

• Step 1: Download the tar ball ExoFit.v2.tar.gz from

http://zuserver2.star.ucl.ac.uk/˜lahav/exofit.html

• Step 2: Go to directory where ExoFit.v2.tar.gz is downloaded and in the
terminal type:

tar xvzf ExoFit.v2.tar.gz

This will extract all the source files into a directory named ExoFit.vX.XX.

• Step 3: ExoFit needs GSL - GNU Scientific Library. In a typical instal-
lation of GSL, GSL header files are located in a directory named gsl

under /usr/include/ and the lib files are located in /usr/lib/. If
you have installed gsl somewhere else please specify the path to gsl in
Makefile. The first two lines of the Makefile should be edited to specify
gsl header files and libraries. For example if you have installed GSL in
/home/visitor/usr/local/, the first two lines should be modified to:

INCDIR=/home/visitor/usr/local/include

LIBDIR=/home/visitor/usr/local/lib

Now you can compile the source files.

• Step 4: We assume that you have
g++ from GCC,the GNU Compiler Collection. To compile and make the
executable type:

make
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This will create two executable files exofit and plotmaker. Now we are
ready to go. You may put these executable files in ~/bin or any other
directory in your PATH for ease of use.

3 Using ExoFit

To use exofit type1

exofit [OPTION] path/rvdata.dat

Where rvdata.dat is the file containing radial velocity data, path is the path to
the file rvdata.dat and [OPTION] can be either -p=1 or -p=2 indicating the ra-
dial velocity model (1-planet or 2-planets) that should be chosen for the search.
If you do not provide any options here, exofit runs with the default option of 1-
planet. For example if your radial velocity data is in /home/data/HD187085.dat
and you would like to search for 1-planet, the you should type:

exofit -p=1 /home/data/HD187085.dat

Modelling of Radial velocity is described in Appendix [A]. A brief intro-
duction to Bayesian analysis given in Appendix [B]. Appendix [C] explains the
MCMC method.

4 Input Data

The input to exofit is the radial velocity data and the state data.

4.1 Radial Velocity Data

120.9170 -12.1 5.3
411.0753 -2.5 6.5
683.1693 16.1 5.7
743.0494 9.3 5.5
767.0046 8.8 4.7
769.0652 5.3 4.4
770.1153 5.3 5.2
855.9477 8.6 8.9
1061.2140 -4.5 5.3

Table 1: Form of the radial velocity data. The entries shown here are from [17]
for HD187085. Columns 1, 2 and 3 show time, radial velocity and uncertainty
in measurement respectively.

1We assume that exofit is in your PATH. Otherwise specify the full path to exofit like

/home/visitor/programs/exofit. You can copy exofit and plotmaker to the present working

directory and type ./exofit /home/data/HD187085.dat
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Radial velocity data is a simple text file with format shown in Table[1]. The
data has 3 columns. Column 1 is the time coordinate, Column 2 is the radial
velocity in ms−1 and Column 3 is the uncertainty in measurement also in ms−1.

4.2 State Data

The state data state.dat defines the starting points of the Markov Chain and
the prior boundaries. If the file state.dat is present in the same directory as
the exofit, then the values from state.dat is taken as input parameters. If it is
not found then exofit runs with default state values which are identical to the
values shown in the table.If you are not familiar with MCMC do not keep this
file in the same directory as exofit. The program works fine even if this file is
not present. Each column in state.dat has the following format:

Parameter
Minimum
Start Value
Maximum
Step Size

V T1 K1 e1 w1 X1 s
-2000.0 0.2 0.00001 0.0 3.0 0.0 0.0
0.0 7500.0 1000.0 0.50 4.145 0.5 1000.0
2000.0 15000.0 2000.0 0.99999 6.28318 0.99999 2000.0
400.0 1500.0 200.0 0.1 0.628 0.1 200.0

Table 2: Form of the text file state.dat for a single planet model, were
V, T 1, K1, e1, w1, X1, s stands for period in days, amplitude, in ms−1,
systematic velocity in ms−1, eccentricity, longitude of periastron in radians,
periastron passage factor and noise factor in ms−1 respectively. Similarly, for
a 2-planet model, state data should contain prior boundaries and step sizes for
12 parameters. Sample state data is provided with exofit package and can be
found in the directory state data

A sample state data is shown in Table[2]. The fist row in the data file is
called a header and it contains the names of each parameter in the state. The
second row contains the minimum values of each parameter, third row contains
the starting points of MCMC2, the forth row specifies the maximum values of
each parameter and the fifth row defines the step sizes parameters. Each column
should be separated by white spaces.

5 Output

The output of exofit is again a text file called extract.dat. This file, as shown in
Table[3] has a header which contains the names of the parameters in the state
and current strength of the state (G in Table[3]). After the header each row
represents the state of the parameters ( in the same order as in the header) at

2 Starting values of MCMC should be between minimum and maximum vales of the pa-

rameter.
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each iteration in the MCMC and the strength at that iteration. We call this an
MCMC extract. The program also produces two other files namely burn.dat and
diag.dat. burn.dat has the same format as the MCMC extract. However these
values are considered as burn in and should not be used for the calculation of
densities. diag.dat has again the same format, but shows the mean and standard
deviation of each parameter for every 10000 iterations. These files shows the
progress of the Markov Chain towards its stationary distribution. extract.dat
is the final output of ExoFit. You may use your own statistical visualisation
programs to analyse extract.dat or make use of the scripts provided below.

V T1 K1 e1 w1 X1 s1 G
-2.0020 1037.0840 14.3680 0.2761 0.4046 0.0661 5.3891 -162.1100
-0.9926 1003.8610 15.5710 0.1887 0.0411 0.1066 4.9867 -162.2000
-0.7553 1080.5220 15.1040 0.3282 0.3089 0.1552 5.2289 -160.8500
0.3385 1005.3890 17.5910 0.2941 0.2238 0.0303 4.6077 -165.5800

Table 3: A sample MCMC extract for 1-planet model.

6 Statistics and Visualisation

6.1 Basics

The output of the exofit is used to estimate the orbital parameters and their un-
certainties. This can be done with the help of any statistical packages available.
We used R to find out the statistical summaries and produce their visualisation.
R is a robust environment for statistical computation which is freely available. It
can be obtained from http://www.r-project.org/. We have provide an R script
that calculates the statistical summaries, plots the posterior densities of each
parameter and finally make the radial velocity curve using median of samples
from the MCMC extract. This file could be found under the directory scripts.
The procedure is explained below. We assume that your machine has R installed
on it.

• Step 1: Start an R session. Open a terminal session and type

R

This will start a new R session. You should get an output as shown in
Figure[1]. To make the density plots and errorbars, the following packages
must be present in R.

1. lattice

2. grid

3. MASS

4. coda

To install these packages use the command:

available.packages()
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Figure 1: R session

This will open up a dialogue box as shown in Figure[2]. Choose an ap-
propriate mirror to download the packages from. To install a packages

Figure 2: CRAN mirrors

use the command install.packages(’package’). For example, to install the
package coda type:

install.packages(’coda’)

To install some of the packages you might need the R header files. You
can get help for a particular command with help(). For example to get
help for install.packages() type:

help(install.packages)
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You may also use the documentation available at the CRAN page at
R Installation and Administration. To quit an R session use the com-
mand:

q()

• Step 2: If you are running exofit and plotmaker from the present work-
ing directory, load the R script file onto the current R session by typing:

source(‘‘path/orbit plot.R’’)

Where path refers to the path to orbit plot.R. This scripts loads the
data from extract.dat and calculates the statistical summaries. You need
to have extract.dat and the executable plotmaker in the present work-
ing directory for this R script to work! Otherwise you need to spec-
ify the PATH to plotmaker in the R script orbit plot.R by modifying the
line system(’./plotmaker’) to system(’PATH/plotmaker’)where PATH
refers to the path to plotmaker.

• Step 3: Display the estimates of orbital parameters in the radial velocity
model. Type:

summary.model()

This should produce an output as shown in the Figure [3]3 and the medians
of all the samples from extract.dat.

Figure 3: Summary of the estimates of orbital parameters in the radial velocity
model.

• Step 4: Plot the densities of orbital parameters in the model. Type:

3You may have to scroll up a bit to see all of them.
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densplot.model()

The output is shown in Figure[4].
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Figure 4: Density plots for orbital parameters of HD187085

• Step 5:Display the estimates of the other useful parameters. Type:

summary.others(‘‘RVdata’’,mass of the star)

This command needs the name of the data set and the mass of the star as
the input. For example, assuming that the mass of HD187085 is 1.16M⊙,
type:

summary.others(‘‘HD187085.dat’’,1.16)

The output is shown in Figure[5].

Figure 5: Summary of the estimates of other useful quantities.
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• Step 6 Plot the densities of other useful quantities as shown in the Fig-
ure[6] by

densplot.others(‘‘RVdata’’,mass of the star)

To plot the posterior distribution of both the model parameters and other
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Figure 6: Density plots of other useful astronomical quantities for HD187085

useful astronomical quantities together, type:

densplot.all(‘‘RVdata’’,mass of the star)

The output is show in Figure [7]
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Figure 7: Density plots of model parameters and other useful astronomical
quantities for HD187085
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• Step 7: Finally plot the radial velocity curve along with the radial velocity
data. Again you need to specify the radial velocity data file

orbit.plot(‘‘HD187085.dat’’)

The output is shown in Figure[8]
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Figure 8: Keplerian orbit fitted onto the radial velocity data of HD187085 using
a single planet model

In order to create a postscript of the plots in R use the following command

dev.print(device=postscript,‘‘filename’’)

The two planet model is automatically picked by the orbit plot.R script by
checking for the number of parameters in the extract.dat file. Summaries and
density plots similar to the 1-planet model are made for 2-planet model by
following same steps as above (i.e no new commands are needed).

6.2 Convergence Tests

Convergence of Markov Chain is an important aspect of any MCMC method.
It is very difficult to tell whether a chain has converged to its stationary dis-
tribution. On the other hand it might be reasonably easy to tell whether a
chain has not converged. There are packages in R which deals with convergence
diagnostics of Markov Chains. These packages offers a variety of tests to check
the convergence of Markov Chains. We use coda for our analysis. It has an
interactive menu to navigate between various tests and other statistical tools
available in the package.

In order to analyse the Markov Chain using coda one need to create an
MCMC object. The R script creates an object called mc. This MCMC object
corresponds to parameters in the radial velocity model. They are the input to
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coda. To start coda in R session type:

codamenu()

This will start a coda session which looks like Figure[9]. Choose the option 2
in the menu and enter mc as the input object. coda will check for the effective
step size first. If it is fine you may proceed further to look at the traceplots and
convergence diagnostics.

Figure 9: Coda menu: Choose option 2

7 Changing Priors

Changing priors involves re-compiling ExoFit. The prior densities on each pa-
rameter are defined in the source file ExoFit.vX.XX/src/mcmc.cc as shown
below.

//add bonds

mcstate.add bond(sys velocity,&uniform);

mcstate.add bond(period 1,&jeffreys);

mcstate.add bond(amplitude 1,&mod jeff);

mcstate.add bond(eccentricity 1,&uniform);

mcstate.add bond(long periastron 1,&uniform);

mcstate.add bond(periastron pass 1,&uniform);

mcstate.add bond(noise factor,&mod jeff);

Where jeffreys represents a Jeffreys prior, mod jeff represents a modified
Jeffreys prior with a break at 1.0 and uniform represents a uniform prior distri-
bution. For example to change the prior distribution of parameter period from
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Figure 10: Inclination of the orbital plane with the reference plane. The angle
i is defined as the angle between the direction normal to the orbital plane and
the observer’s line of sight.

jeffreys to uniform, simply modify the corresponding line to

mcstate.add bond(period,&uniform);

Then make the executable binaries using the command make as explained in the
Section[2].

Appendices

A Modelling of Radial Velocity

A.1 Doppler Spectrography

Planets are many times fainter than their host stars because they shine only
by reflecting the star light. This makes their direct imaging extremely difficult.
However, the gravitational pull of the planet makes the star wobble and this
produces measurable periodic shifts in the apparent speed of the parent star.
The motion of the star around the centre of mass causes the observed spectrum
of the star to be Doppler shifted according its radial velocity, i.e. the velocity
along the line of sight of the observer. This is measured over a course of time
to obtain the radial velocity data along with the measurement uncertainties.

A.2 Radial Velocity of Star

A single planet model is assumed here to analyse the radial velocity data. Re-
ferring to Fig. 10 the radial velocity of a star can be written as [21, 23]

vi = V − mp

ms + mp

na sin i√
1 − e2

(

sin(fi + ̟) + e sin ̟
)

, (1)

where vi is the ith radial velocity entry corresponding to time coordinate ti and,
V = the systematic velocity of the system,
mp = the mass of the planet,
ms = the mass of the star,
n = 2π

T the mean motion and T is orbital period of planet,
a = the length of the semi-major axis of the planet,
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Figure 11: Figure on the left shows the motion of the planet around the star.
Figure on the right shows the relative motion of the planet and the star around
the centre of mass.

i = the inclination of the orbital plane with the ecliptic,
e = the eccentricity of the planet,
fi = the true anomaly at time ti and
̟ = the longitude of periastron.

Notice that the equation does not contain the time explicitly. On the other
hand radial velocity is a function of true anomaly which is given by

cos fi =
cosEi − e

1 − e cosEi
, (2)

where Ei is the eccentric anomaly at the instant ti given by the Kepler’s equation

Mi = E − e sin E . (3)

Finally we have an equation that contains time explicitly. In the above equation
Mi is the mean anomaly which can be written as

Mi = n(ti + τ) =
2π

T
(ti + τ) , (4)

where τ is the time of pericenter passage. For the computational purpose we
define periastron passage factor χ as the fraction of orbit prior to the start of
data-taking that periastron occurred [15]. In other words χT = the number of
days prior to ti = 0 that the star was at periastron for an orbital period of T
days.

Motion of the star as well as the planet can be described by the same equation
that describes their relative motion but reduced in scale by a factor of either
ms/(ms+mp) or mp/(ms+mp). Let as and ap represent the length of the semi-
major axis of the motion star and planet around the centre of mass respectively.
Since a = as + ap we have,

as =
mp

ms + mp
a . (5)

Substituting this result into equation (1), we obtain

vi = V − K
(

sin(fi + ̟) + e sin ̟
)

, (6)

where

K =
2π

T

as sin i√
1 − e2

. (7)
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The above relations lead to other parameters of the orbit. The length of the
semi-major axis a and mass of the planet mp sin i are calculated as follows:

as sin i =
K T

√
1 − e2

2π
, (8)

mp sin i ≈ K m
2
3
s T

1
3

√
1 − e2

2π G
and (9)

a ≈ msas sin i

mp sin i
. (10)

A.3 Radial velocity data

According to (http://exoplanet.eu) eighteen different radial velocity search pro-
grammes are looking for extrasolar planets. Majority of the contributions come
from Keck, Lick and Anglo-Australian observatories (the California & Carnegie
and Anglo-Australian planet searches) and searches based at l’Observatoire de
Haute Provence and La Silla Observatory (the Geneva extrasolar planet search).
Radial velocity data for a star consists of time of observation ti, measured radial
velocity vi and uncertainty associated with each measurement ei. These uncer-
tainties are a characteristic of the instruments used for measurements. The
precision of these instruments have improved from the order of 10ms−1in 1994
to order of 1ms−1 [7, 25] at present.4 This is extremely significant for finding
low mass companions as well as planets with large a s.

B Bayesian Retrieval of orbital parameters

The extraction of orbital parameters from the radial velocity data poses con-
siderable statistical challenges. Traditional methods methods first search for
periodicity in the observed data using a Lomb-Scargele periodogram and then
proceed to fix the other parameters by Levenberg-Marquardt method. Studies
by [8] and [9] have identified two cases where these methods become inefficient
in accurately characterising the orbital elements:

1. When the orbital period is extremely short and the eccentricity is high.

2. When the duration of observation does not span at least a single orbital
phase.

Since the transit probability of the planet increases for short periods, the
orbital parameters predicted by the periodogram method can be verified with
the help of transit photometry. Incomplete radial velocity data gives rise to
a multitude of orbital solutions which is referred to as parameter degeneracy.
Higher eccentricities make the radial velocity curve less sinusoidal.[24] makes use
of a 2DKLS periodogram to incorporate the effect of eccentricity of the orbits
while searching for orbital periods. Recently Bayesian techniques have been
employed by [14], [10] and [11] to retrieve the orbital parameters of extra-
solar planets. The results show that Bayesian methods tackle the difficulties
associated with the traditional methods efficiently and transparently.

4The measurement method and its uncertainties are discussed in the corresponding planet

discovery papers
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B.1 The Bayesian method

The starting point of any Bayesian analysis is Bayes’ theorem [2]. Let y =
(y1, . . . , yi, . . . , yn) be a vector of n observations whose probability distribution
p(y|θ, H) is conditional on k parameters θ = (θ1, . . . , θi, . . . , θk), where H rep-
resents the background information or the hypothesis by which the probability
statements are made. Suppose that the parameter θ has the probability distri-
bution p(θ|H). Then, Bayes’ theorem says

p(θ|y, H) =
p(y|θ, H)

p(y|H)
. (11)

For a continuous θ we can write

p(y|H) =

∫

p(y|θ, H) p(θ|H) dθ , (12)

which is constant for given y and a probability distribution p(θ|H). Then
Equation [11] can be rewritten as

p(θ|y, H) = C p(y|θ, H) p(θ|H) . (13)

In the above equation p(θ|H) is called prior distribution of θ since it conveys
our knowledge about θ before the data has been observed. Correspondingly,
p(θ|y, H) is known as the posterior distribution of θ given y. The factor C is
a normalising constant which ensures that the posterior distribution integrates
to one. We call p(y|θ, H) the likelihood function of θ since p(y|θ, H) can be
considered as a function of θ instead of y. Then,

p(θ|y, H) ∝ p(y|θ, H) p(θ|H) . (14)

Statistical inferences regarding θ are derived from the posterior distribution
of θ. The posterior distribution encapsulates all information about unknown
quantities θ following the observation of the data y.

The principal steps in the Bayesian method can be summarised as fol-
lows [22].

• Likelihood: Find out the Likelihood function p(y|θ, H). This is the pro-
cess of describing the observed data in terms of a chosen set of parameters
θ.

• Prior: Obtain the prior density p(θ|H). This is the statement of our
knowledge about the unknown parameters before the observation of data.

• Posterior: Apply Bayes’ theorem to derive the posterior probability dis-
tribution p(θ|y, H). This describes our knowledge about θ after observing
the data.

• Inference: Make Appropriate inference statements. These are derived
from the posterior distribution and include point estimates as well as in-
terval estimates.
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B.2 Likelihood function

Let di represent the measured radial velocity data for the ith instant of time ti.
Observed radial velocity data can be modelled by the equation [14]

di = vi + ei + ǫ , (15)

where ei is the uncertainty component arising from accountable but unequal
measurement errors which are assumed to be normally distributed. The term ǫ
explains any unknown measurement errors. There can be multiple reasons for
the presence of this uncertainty component [7]. For example this could be the
result of another planet in the system or caused by the intrinsic anomalies in the
star spectrum due to the irregularities on the surface of the star [25, 19, 5]. Thus
any noise component that cannot be modelled is described by the term ǫ. The
probability distribution of ǫ is chosen to be a Gaussian distribution with finite
variance s2. Therefore the combination of uncertainties ei + ǫ has a Gaussian
distribution with a variance equal to σ2

i + s2.
The radial velocity vi predicted by the mathematical model at an instant ti

is given by the equation (6) as,

vi = V − K
(

sin(fi + ̟) + e sin ̟
)

.

Six model parameters namely T, K, V, e, w,and χ, as defined in the section (A.2)
are used to fit the above equation onto a given radial velocity data.

Each error term ei in equation (15) is independent. Since they are assumed
to follow a Gaussian distribution, the likelihood function is product of N Gaus-
sians [15, 14] where N is the number of observations. Thus

p(y|θ) = A exp

[

−
N

∑

i=1

(di − vi)
2

2(σ2
i + s2)

]

, (16)

where

A = (2π)−N/2

[

N
∏

i=1

(

σ2
i + s2

)

−1/2

]

. (17)

and s becomes the seventh parameter in our probability model.

B.3 Choice of Priors

The choice of priors is extremely important in the Bayesian analysis as senseless
choice of priors can produce to misleading results. As we have mentioned in the
last section a set of priors which can be described as reference priors has to be
found out. The priors for our problem are chosen in such a way that

1. these reference priors should remain ‘neutral’ or they should ensure that
the information gleaned from the data may be allowed to dominate their
densities [6].

2. they should convey the known physical aspects of the system unambigu-
ously.
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Physical and geometric conditions govern the selection of prior distributions for
most of the parameters. Since θ = (T, K, V, e, ̟, χ, s) the prior distribution in
our problem can be written as

p(θ|H) = p(T |H) p(K|H) p(V |H)

p(e|H) p(̟|H) p(χ|H) p(s|H) , (18)

on the assumption that they are independent. We will discuss how the above
conditions are met for our choice of prior for each parameter in the next few
sections.

The sampling of the radial velocity data in most of the cases is highly non-
uniform. The sparse sampling makes the retrieval of the orbital period more
challenging because a number of orbital periods might yield the same fit. The
radial velocity scatter diagram is analysed first for some initial hints on the range
of possible orbital periods. For example there are cases in which we observe a
clear periodicity in the scatter diagram and hence we can set an upper limit for
orbital period. [14] sets the upper limit of the orbital period to be three times
the duration of observation. [11] consider 103 years as the upper limit for the
orbital period. The theoretical limit (Roche limit) for a planet with 10 times
the mass of Jupiter orbiting a star with mass equal to that of sun will be 0.2
days. We choose a Jeffreys prior for the orbital period. Therefore

p(T ) =
1

T ln
(

Tmax

Tmin

) . (19)

From the current mass distribution of extra-solar planets we can set the
upper bound Kmax = 2129 ms−1 which corresponds to a maximum planet to
star mass ratio of 0.01. Since the lower bound includes zero we use a modified
Jeffreys prior for K [11] given by

p(K) =
1

(K + K0) ln
(

K0+Kmax

K0

) . (20)

For K ≪ K0, p(K) behaves like a uniform prior and for K ≫ K0 it behaves like
a Jeffreys prior. The factor K0 could be thought as a lower bound in the Jeffreys
prior and we choose K0 = 1 ms−1 which corresponds to the smallest detectable
velocity at present. The choice of prior for K becomes significant only when
the planet detection is marginal. However, if the posterior distribution has a
probability peak near K0 then we should re-analyse the inference by checking
how sensitive is the posterior to the value of K0.

The systematic velocity is attributed to the absolute motion of the star
through the space. Since any value in the range (0,∞) is possible in this case,
we may choose a uniform improper prior for V [15]. Thus,

p(V ) =
1

Vmax − Vmin
. (21)

Eccentricity of the orbit can have any value between 0 and 1 excluding 1,
since e = 1 corresponds to a parabolic orbit. Therefore we choose a uniform
prior for e given by

p(e) = 1 . (22)
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Table 4:
The assumed prior distribution of various parameters and their boundaries. It
is similar to choice of priors given by [11], except for the prior distribution of

K.

Para. Prior Mathematical Form Min Max

T (days) Jeffreys 1

T ln

(

Tmax

Tmin

) 0.2 15000

K(ms−1) Mod. Jeffreys (K+K0)
−1

ln
(

K0+Kmax

K0
)

0.0 2000

V (ms−1) Uniform 1
Vmax−Vmin

-2000 2000

e Uniform 1 0 1
̟ Uniform 1

2π 0 2π
χ Uniform 1 0 1

s(ms−1) Mod. Jeffreys (s+s0)−1

ln
(

s0+smax

s0

) 0 2000

Longitude of periastron can have any value in the range [0, 1]. We choose a
uniform prior for ̟ with a distribution The definition of ̟ in our formulation
has a difference of π/2 with the traditional formalism. Please see the figure [10]
to differentiate between these two definitions.

p(̟) =
1

2π
. (23)

The periastron passage time is measured as fraction of the given orbital
period. It can have any value between 0 and 1. A uniform prior is selected with
boundaries 0 and 1. Thus,

p(χ) = 1 . (24)

Our choice is a modified Jeffreys prior. The upper bound for s is taken to
be Kmax. The minimum possible value for s is 0 and therefore following [11],
we choose a break s0 at 1ms−1 . Hence we have,

p(s) =
1

(s + s0) ln
(

s0+smax

s0

) . (25)

Table 4 shows the choice of priors for each parameter and their boundaries.

B.4 2-planet Model

ExoFit has an option to search for two planets in the radial velocity data. We
choose the probability model to be similar to that of the single planet model
explained in Section B.2. The observed radial velocity data is again modelled
by the equation 15. The radial velocity vi predicted by the mathematical model
at an instant ti is given by

vi = V −
(

K1

(

sin(fi1 + ̟1) + e1 sin ̟1

)

+ K2

(

sin(fi2 + ̟2) + e2 sin̟2

)

)

. (26)
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Para. Prior Mathematical Form Min Max

V(ms−1) Uniform 1
Vmax−Vmin

-2000 2000

T1(days) Jeffreys 1

T1 ln

(

T1 max

T1 min

) 0.2 15000

K1(ms−1) Mod. Jeffreys (K1+K1 0)−1

ln
(

K1 0+K1 max

K1 0
)

0.0 2000

e1 Uniform 1 0 1
̟1 Uniform 1

2π 0 2π
χ1 Uniform 1 0 1
T2(days) Jeffreys 1

T2 ln

(

T2 max

T2 min

) 0.2 15000

K2(ms−1) Mod. Jeffreys (K2+K2 0)−1

ln
(

K2 0+K2 max

K2 0
)

0.0 2000

e2 Uniform 1 0 1
̟2 Uniform 1

2π 0 2π
χ2 Uniform 1 0 1

s(ms−1) Mod. Jeffreys (s+s0)−1

ln
(

s0+smax

s0

) 0 2000

Table 5: The assumed prior distribution of orbital parameters and their bound-
aries for a 2-planet model. The boundaries for K2 can be made smaller in order
to speed up the convergence of the Markov Chain.

11 parameters {V, T1, K1, e1, w1, χ1, T2, K2, e2, w2, χ2}5, as defined in the Sec-
tion A.2 are used to fit the above equation onto the radial velocity data. The
likelihood function is again given by equations 16 and 17 respectively, and s
becomes the 12th parameter in our probability model. The choice of prior dis-
tributions for each of these parameters is given in Table 5.

B.5 Posterior Distribution

Posterior distribution is obtained by applying the Bayes’ theorem given by the
equation (13). This is the output of a Bayesian analysis and it summarises all
that we know about the physical system after the observation of data subject
our prior believes. Having obtained the posterior density we need to derive
suitable inference statements about the quantities. In the present case, we need
to state what the posterior distribution has to say about the orbital parameters
of the planet. The objective is to extract the information concerning θ and
describe it via effective summary statements. The marginal posterior densities
of all parameters present the complete summary in the Bayesian analysis. Useful
and interesting features of the posterior distribution should be identified before
making summary statements. For example, the posterior distribution may be
unimodal but asymmetric or it can be multi-modal with many probability peaks.

Any summary statistic can be expressed in terms of posterior expectations
of θ [12, 4]. The posterior expectation of a function f(θ) can be written as:

E[f(θ|y, H)] =

∫

f(θ|H)p(θ|H) p(y|θ, H) dθ
∫

p(θ|H) p(y|θ, H) dθ
. (27)

5Subscripts 1 and 2 indicate planets 1 and 2 respectively.
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The multi-dimensional integral in the above equation is one of the key issues
in Bayesian inference because the evaluation of such integrals by analytical
methods is nearly impossible. Therefore, in most occasions numerical methods
are employed.

C MCMC Implementation

Difficulty in evaluating the multi-dimensional integrals is an inherent inabil-
ity of any Bayesian formulation. Many techniques have been developed in the
last 25 years to approximate the integral in equation (27). Simulation methods
dominate this area and several computational algorithms were developed to nu-
merically integrate the posterior distribution in order to find out the marginal
distributions of each parameter. According to [3] the abundance of computa-
tional power has produced a paradigm shift with respect to statistics: Computa-
tionally intensive but conceptually simple methods are preferred. Markov Chain
Monte Carlo (MCMC) method is one of the most commonly used methods for
simulating complex probability distributions. The method is explained in Sec-
tion C.1 with respect to a general form given by Metropolis-Hastings [20, 16]
algorithm.

C.1 Metropolis Hastings algorithm

The present section is based on the explanations given by [14] and [12]. Metropolis-
Hastings does a random walk through the model parameter space such that the
number of samples in particular region is proportional to the posterior density.
In order explain the Metropolis Hastings algorithm we define two terms

1. Target Distribution: This is the same as the posterior distribution given
by equation (13).

2. Proposal Distribution q: The samples θt are drawn from this probability
distribution

The random walk is achieved through a Markov Chain. At each iteration t the
next state θt+1 = φ is chosen by first sampling a candidate from a proposal
distribution q(φ|θ). The proposal distribution is chosen in such a manner that
it is easy to evaluate and is centred on the current state θ. Most widely used
choice for a proposal distribution is a multi-variate Gaussian distribution which
has the desired property that away from the current sample the probability
density decreases [14]. The new sample φ is accepted with a probability r given
by,

r = MIN

[

1,
p(φ) q(θ|φ)

p(θ) q(φ|θ)

]

(28)

where q(φ|θ) = q(θ|φ) for a symmetrical proposal distribution. If the proposal
is not accepted the Markov chain remains in the same state. The above process
can be summarised as follows:

Initialise θ0; set t = 0,
Repeat{
Sample a proposal φ from q(φ|θ)
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Sample a Uniform(0,1) random variable U
If U ≤ r set θt+1 = φ

Else set θt+1 = θt

Increment t
}

D The ExoFit software package

Bayesian MCMC methods have gained popularity in various areas of astro-
physics, for example in multi-parameter estimation from cosmological data sets
(e.g. CosmoMC; [18]). From a Bayesian point of view analysis of statistical
problems requires an efficient tool for simulating posterior densities and MCMC
methods are ideally suited for this purpose. In general the radial velocity of an
n-planet model could be approximated as linear combination of n single planet
radial velocities. Even though we consider a single planet model for the present
analysis, it would be ideal to design the code in such a manner that the extension
to multi-planet problem could be achieved without a huge effort.

ExoFit is a step towards achieving the goals mentioned above. It should
be considered as a platform to develop MCMC based methods for estimating
orbital parameters of a generalised multi-planet model. Object oriented de-
sign of ExoFit makes it better suited for extending the analysis to multi-planet
systems with prior constraints on several orbital parameters such as eccentric-
ity and length of semi-major axis. Following [13], our implementation MCMC
consists of the following parts.

1. Data

2. State

3. Bond

4. Update

They are referred to as objects in object oriented analysis. data handles the
input data into the MCMC analysis. A state consists of a set of parameters
whose posterior distribution is sought. The parameter values at a particular
instant defines the state of Markov Chain in the analysis. The parameters in
a particular state are connected to each other by a bond. It consists of prior
densities and likelihood. For each state there corresponds a bond strength which
is equal to prior× likelihood. In other words it is the posterior density without
the normalisation constant in Bayes theorem. An update selects the parameters
that should be updated at particular iteration. New values for the parameters
are proposed according to the update defined and the new bond strength is
then calculated for the proposed state. The new state is accepted or rejected
according Metropolis-Hastings method.

The central concept of this approach is that, the MCMC engine remains
the same and need not be re-implemented whenever the probability model gets
changed. We also take advantage of the commonalities among the different com-
ponents of MCMC. As an example we notice that, for each MCMC parameter
in the Bayesian analysis, we need to specify at least three values.

1. Lower bound
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2. Upper bound

3. Step size

Our implementation works for variety or prior distributions and Update meth-
ods. The only component that requires to be changed is the likelihood function.
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440, 2005.

[6] G. P. Box and C. Tiao. Bayesian Inference in Statistical Analysis. Addison-
Wesley Publishing Company, 1973.

[7] R. P. Butler et al. Catalog of nearby exoplanets. Atrophysical Jounal, 646,
2006.

[8] A. Cumming. Detectability of extrasolar planets in radial velocity. Monthly
Notices of the Royal Astronomical Society, 354, 2004.

[9] A. Cumming, G. W. Marcy, and R. P. Butler. The lick planet search:
Detectability and mass thresholds. Astrophysical Journal, 526, 1999.

[10] E. B. Ford. Quantifying the uncertainty in the orbits of extrasolar planets.
Astronomical Journal, 129, 2005.

[11] E. B. Ford and P. C. Gregory. Bayesian model selection and extrasolar
planet detection. ASP Conference Series, 371, 2007.

[12] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov Chain
Monte Carlo in Practice. Chapman & Hall London, 1996.

[13] Todd L Graves. Design ideas for markov chain monte carlo software. Jour-
nal of Computational & Graphical Statistics, 16(1):24–43, 2007.

[14] P. C. Gregory. A bayesian analysis of extrasolar planet data for hd 73526.
Astrophysical Journal, 631, 2005.

21



[15] P. C. Gregory. Bayesian Logical Data Analysis for the Physical sciences: A
comparitive Approch with “Mathematica” Support. Cambridge: Cambridge
University Press, 2005.

[16] W. K. Hastings. Monte carlo sampling methods using markov chains and
their applications. Biometrika, 57(1):97–109, 1970.

[17] H. R. A. Jones, R. P. Butler, C. G. Tinney, G. W. Marcy, B. D. Carter,
A. J. Penny, C. McCarthy, and J. Bailey. High-eccentricity planets from the
anglo-australian planet search. Monthly Notices of the Royal Astronomical
Society, 369(1):249–256, 2006.

[18] A. Lewis and S. Bridle. Cosmological parameters from cmb and other data:
A monte carlo approach. Physical Review D, 66(10):103511, 2002.

[19] M. Mayor, F. Pepe, and D. Queloz et al. Setting new standards with harps.
The Messenger, 114, 2003.

[20] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, Teller A. H., and
E. Teller. Equations of state calculations by fast computing machines.
Journal of Chemical Physics, 21(6):1087–1092, 1953.

[21] C. D. Murray and S. F. Dermott. Solar System Dynamics. Cambridge
University Press, 2000.

[22] A. O’Hagan and J. Forster. Bayesian Inference, volume 2B of Kendall’s
Advanced Theory of Statistics. Oxford University Press Inc, 198 Madison
Avenue, New York, NY10016, 2 edition, 2004.

[23] Y. Ohta, A. Taruya, and Y. Suto. The rossiter-mclaughlin effect and an-
alytic radial velocity curves for transiting extrasolar planetary systems.
Astrophysical Journal, 622, 2005.

[24] S. J. O’Toole, R. P. Butler, C. G. Tinney, H. R. A. Jones, G. W. Marcy,
B. Carter, C. McCarthy, J. Bailey, A. J. Penny, K. Apps, and D. Fis-
cher. New planets around three g dwarfs. The Astrophysical Journal,
660(2):1636–1641, 2007.

[25] F. Pepe, M. Mayor, and D. Queloz et al. The harps search for southern
extra-solar planets. i. hd 330075 b: A new “hot jupiter”. åp, 423, 2004.
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