

Velocity is used as a surrogate for distance – km/s for v<<c, otherwise redshift, *z*, where

$$1+z \equiv \frac{\lambda}{\lambda_0} = \frac{\lambda_0 + \Delta\lambda}{\lambda_0} = 1 + \frac{\Delta\lambda}{\lambda_0}$$

$$1 + z = \frac{\lambda}{\lambda_o} \simeq 1 + \frac{v}{c}$$
$$1 + z = \frac{\lambda}{\lambda_o} = \frac{1 + v/c}{\sqrt{1 - v^2/c^2}}.$$

N.B. Everything appears to be moving away from us, but in reality everything is moving away from everything (on cosmological scales; not true locally... Also, expansion of the universe does not mean expansion of the *contents* of the universe.)

→ 'Big Bang' model

Convenient BUT WRONG to think in terms of a point explosion:

The universe is (almost certainly) infinite, and always has been infinite, even at the time of the big bang....(brain hurt time). 'Size of the universe' generally means 'what we can see'

'Big Bang' model (*model*, not a theory) is in accord with:
Hubble Flow (expansion of the universe)
Evolution of source counts
Cosmic Microwave Background (CMB)
Primordial abundances of elements
(Other, more detailed, features are consistent with inflationary and 'λCDM' *theories*)

Evolution of source counts; n sources per unit volume, each of intrinsic brightness L.

Number of sources per steradian out to distance *r*:

$$\begin{split} N(r) &= \frac{4\pi r^3}{3} \cdot \frac{n}{4\pi} = \frac{nr^3}{3} \\ \ell \propto L/r^2 \text{ (i.e., } r^2 \propto L/\ell). \\ N(\ell) \propto \frac{nL^{3/2}}{\ell^{3/2}} \end{split}$$

Relic radiation: the Cosmic Microwave Background (CMB)
Initially, the universe was fully ionized, and opaque (or 'optically thick', because of electron scattering).
Matter and radiation strongly interacted → black-body distribution of radiation
Eventually, the universe cooled sufficiently for (hydrogen) atoms to form (T = 3000K, t = 100,000yr, z = 1000).
Radiation decoupled from matter, and has flowed through the universe ever since. We see this 'last scattering surface' redshifted, and it appears to us as a black body at T = 3K (or 2.7K, or 2.725K, depending on how picky you are)

As the early universe cooled, the initially ionized hydrogen would 're'combine with free electrons. We might expect this to occur roughly when

$$kT \sim 13.6 \mathrm{eV} \rightarrow T \sim 1.5 \times 10^5 \mathrm{K}.$$

However, photons outnumber electrons by a factor $\sim 10^9$ (then, and now).³ Also, there is a distribution of photon energies at a given temperature (described by the Planck function). In consequence there were still plenty of photons capable of ionizing hydrogen, even at temperatures well below 10^5 K, and a better estimate of the temperature at which the radiation field just failed to ionize hydrogen is

$$\sim (13.6 \text{eV}/k) / \ln(10^9) \simeq 7600 \text{K}.$$

More detailed calculations show that the hydrogen first recombined at $T\sim 3000 {\rm K}.$

PRIMORDIAL NUCLEOSYNTHESIS

- Protons are lighter than neutrons (938.3MeV vs. 939.6MeV; $\Delta m = 1.3$ MeV)
- Free neutrons decay $(n \rightarrow p + e^{-})$, with a half-life of ~940s
- Bound neutrons (in nuclei) are stable

At high temperatures the numbers of neutrons and protons are practically identical (since the mass-energy difference between them is negligible compared to kT):

$$n \leftrightarrow p + e^- + \overline{\nu}_{\rm e}(+0.8 {\rm MeV})$$

(plus other processes). However, when $kT \sim 0.8$ MeV neutrons can convert to protons, but not vice versa. Thus protons begin to outnumber neutrons, by a factor

$$\frac{n_{\rm p}}{n_{\rm n}} \sim \exp\left(\frac{\Delta m}{kT}\right) \sim \exp\left(\frac{1.3}{0.8}\right) \sim 5$$

The protons and neutrons combine to build up complex nuclei. Densities are too low at this stage for many-body collisions to be important, so nuclei build up through chains of two-body collisions, starting with $p + n \rightarrow^2 D + \gamma$ and then proceeding through a variety of routes, schematically as ${}^{2}\text{D} + n \rightarrow^{3}\text{T} + \gamma {}^{2}\text{D} + p \rightarrow^{3}\text{He} + \gamma {}^{2}\text{D} + ^{2}\text{D} \rightarrow^{3}\text{He} + n {}^{2}\text{D} + ^{2}\text{D} \rightarrow^{4}\text{He} + \gamma$

follows:

$$\label{eq:He} \begin{array}{l} {}^{3}\mathrm{He}+n \rightarrow {}^{4}\mathrm{He}+\gamma \\ {}^{3}\mathrm{He}+n \rightarrow {}^{3}\mathrm{T}+p \\ {}^{3}\mathrm{T}+p \rightarrow {}^{4}\mathrm{He}+\gamma \end{array}$$

The key stage is the production (and destruction) of deuterium, which has a low binding energy (~2.2MeV), and so is destroyed at $T \geq 10^9$ K. Nucleosynthesis actually occurs at around $kT \sim 0.1$ MeV ($T \sim 3 \times 10^8$ K), for a period around $t \sim 400$ s. This timescale is long enough for the decay of free neutrons to be significant, but not complete; these decays reduce the neutron:proton number ratio by a further factor of ~ exp(400/940) to give a final neutron:proton ratio of

$$n_{\rm n}/n_{\rm p} \simeq 1/7.$$

The only elements produced in bulk are ¹H and ⁴He (the only stable low-mass nuclei), with virtually all the neutrons in helium. Thus the number density of helium atoms is $n(^{4}\text{He}) = n_{n}/2$; each weighs 4 neutron masses (to a very good approximation) so the mass density is $2n_{n}m_{\text{H}}$. The total mass density is $m_{\text{H}}(n_{n} + n_{p})$, so the mass fraction of helium is

$$Y_4 = \frac{2n_{\rm n}}{n_{\rm n} + n_{\rm p}} = \frac{2}{1 + n_{\rm p}/n_{\rm n}} \simeq \frac{2}{1 + 7} = 0.25$$

DYNAMICS OF THE UNIVERSE

After the big bang, we might expect the rate of expansion to slow down under the influence of gravity. The rate of deceleration is expected to depend on how much mass there is.

The mass content is conventionally expressed as Ω_M , a fraction of the mass required to bring the universe to a halt after infinite time.

DYNAMICS OF THE UNIVERSE

The Friedmann Equation describes this:

$$\dot{R}^{2}(t) = \frac{8\pi G\rho R^{2}(t)}{3} - kc^{2} + \frac{\Lambda}{3}R^{2}(t).$$

R is the 'scale factor' Λ is the 'cosmological constant' term *k* is the 'curvature': -1, 0, +1 = negative, flat, positive geometry

Curvature has a simple but limited **dynamical interpretation** IF only gravity matters; then positive geometry corresponds to a closed universe (recollapses), negative geometry corresponds to an open universe (expands forever)

$\Omega_{\rm M}$ $>$ 1 $-$	matter will stop universal expansion after finite time (followed by recollapse, and a 'Big Crunch'); a closed universe <u>Geometry</u> : positive curvature, $k = +1$
$\Omega_{\rm M}$ < 1 -	gravity will never stop the expansion (an open universe) <u>Geometry</u> : negative curvature, $k = -1$
$\Omega_{\rm M} = 1 -$	a critical universe <u>Geometry</u> : flat (Euclidean), $k = 0$
(The simp applies if the dynan	le relationship between Ω_M and geometry only matter is the only important ingredient in determing nics of the universe)

We generalize Ω to include not just matter, but all forms of mass/energy: $\Omega_M = \Omega_B + \Omega_{DM} (+ \Omega_v....)$

 $\Omega = \, \Omega_{M} + \Omega_{\Lambda} \, (+ \, \Omega_{starlight}, \, \Omega_{CMB} ...)$

What is the geometry (i.e., what is Ω_{total} ?)

The geometry of the Universe is flat ($\Omega_{Total} = 1$) to within a few per cent (implies very close to flat)

But observationally, $\Omega_B = 0.04$, and $\Omega_M = 0.27$

What makes up the rest? Not starlight, not neutrinos, not CMB but *dark energy* (aka the cosmological constant/vacuum energy) $\Omega_{\Lambda} = 0.7$

(corresponds to an equivalent mass density of the vacuum of 10^{-26} kg m⁻³ – 120 orders of magnitude smaller than particle-physics estimate!)

→ 'Concordance Model'

CONCORDANCE COSMOLOGY:

Symbol	Value	+ uncertainty	- uncertainty
Ω _{tot}	1.02	0.02	0.02
w	< - 0.78	95% CL	6
$^{\Omega}{}_{\Lambda}$	0.73	0.04	0.04
$\Omega_{\rm b} h^2$	0.0224	0.0009	0.0009
Ω _b	0.044	0.004	0.004
n _b	2.5×10^{-7}	0.1×10^{-7}	0.1×10^{-7}
$\Omega_{\rm m} h^2$	0.135	0.008	0.009
Ω _m	0.27	0.04	0.04
$\Omega_{\nu} h^2$	< 0.0076	95% CL	
T _{cmb}	2.725	0.002	0.002
ny	410.4	0.9	0.9
η	6.1×10^{-10}	0.3×10^{-10}	0.2×10^{-10}
$\Omega_{\rm b} \Omega_{\rm m}^{-1}$	0.17	0.01	0.01
	$\begin{array}{c} & \text{Symbol} \\ & \Omega_{\text{tot}} \\ & & \Omega_{\Delta} \\ & & \Omega_{b} h^{2} \\ & & \Omega_{b} \\ & & n_{b} \\ & & n_{b} \\ & & \Omega_{m} h^{2} \\ & & \Omega_{m} \\ & & \Omega_{\nu} h^{2} \\ & & T_{\text{cmb}} \\ & & & n_{\gamma} \\ & & \eta \\ & & & \Omega_{\nu} \Omega_{\mu} \Omega_{$	Symbol Value Ω_{tot} 1.02. w <-0.78	$\begin{tabular}{ c c c c c } \hline Symbol & Value & + uncertainty \\ \hline Ω_{tot} & 1.02 & 0.02 \\ w & <-0.78 & 95\% CL$ \\ Ω_{Λ} & 0.73 & 0.04 \\ Ω_{b} h^{2} & 0.0224 & 0.0009 \\ Ω_{b} & 0.044 & 0.004 \\ n_{b} & 2.5 \times 10^{-7}$ & 0.1 \times 10^{-7}$ \\ Ω_{m} h^{2} & 0.135 & 0.008 \\ Ω_{m} & 0.27 & 0.04 \\ Ω_{μ} h^{2} & <0.0076 & 95\% CL$ \\ T_{cmb} & 2.725 & 0.002 \\ n_{γ} & 410.4 & 0.9 \\ η & 6.1 \times 10^{-10}$ & 0.3 \times 10^{-10}$ \\ Ω_{k} Ω_{m}^{-1} & 0.17 & 0.01 \\ \hline \end{tabular}$

 $\begin{array}{ll} H_0 = 72 \ \text{km/s/Mpc} & \Omega_M = 0.27 & \Omega_\Lambda = 0.73 & (\Omega_{Tot} = 1.00) \\ \text{Age of the Universe: } 1.37.10^{10} \ \text{yr} \end{array}$

Structure problem: If we take a typical length scale of 1Mpc in the present-day universe, and project back to $t \sim 10^{-30}$ s, the length scale is ca. 0.1mm

This is small, but still much larger than the Hubble scale at that time - ca. 10^{-23} mm!

So how did large-scale structure come about? (Another sort of 'horizon problem')

Monopole problem: where are they??

Why is the vacuum force repulsive?

Consider a piston filled with (false) vacuum; pull out the piston to increase the volume by an amount V. The false-vacuum mass increases by an amount $\rho_{vac}V$, and its energy by $\rho_{vac}Vc^2$, which must correspond to the work done on the piston, -pV. Thus the false vacuum has a *negative* pressure, $p = -\rho_{vac}c^2$. ["Equation of State": $w = p/\rho$ w = -1 for Cosmo Const, otherwise "quintessence";

for w<-1, "big rip".]

A negative pressure doesn't sound promising for inflating the universe, but it isn't pressure itself that's important (even in familiar circumstances, only pressure differences do).

But....

In GR, pressure has associated with it a gravitational field!

Negligible under normal circumstances (air pressure has a gravitational field 10⁻¹¹ of the field generated by the air's mass density), but in the (very!!) early universe pressures were enormous – and mattered

Solving the equations of motion (we won't), we find that

 $R(t) \sim \exp(Ct)$

i.e., the universe expands exponentially (with a time constant of of 10^{-34} or 10^{-33} s)

	(for now)	
	(Ior now)	
The End		